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Senior Mathematical Challenge 2021 Solutions and investigations

1. Cicely had her 21st birthday in 1939.

When did she have her 100th birthday?

A 2020 B 2019 C 2018 D 2010 E 2008

Solution C

Cicely had her 21st birthday in 1939. Since 1939 − 21 = 1918, it follows that she was born in
1918.

Now, 1918 + 100 = 2018.

Therefore Cicely’s 100th birthday was in 2018.

For investigation

1.1 The mathematician Augustus De Morgan was born and died in the 19th century. On one
birthday he noticed that the square of his age was the same as the year number.

In which year was Augustus De Morgan born?

1.2 Determine for which values of n a person born in year n could have the same experience
as Augustus De Morgan if they lived long enough, that is, they would have a birthday on
which the square of their age was the same as the year number.

2. The sequence, formed from the sequence of primes by rounding each to the nearest ten,
begins 0, 0, 10, 10, 10, 10, 20, 20, 20, 30, ... .

When continued, how many terms in this sequence are equal to 40?

A 1 B 2 C 3 D 4 E 5

Solution C

The integers that round to 40 are those in the range from 35 to 44.

The primes in this range are 37, 41 and 43.

Therefore there are 3 primes that round to 40.

For investigation

2.1 How many primes are rounded to 50?

2.2 What is the largest number of primes that round to the same multiple of 10?
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3. The diagram shows two congruent regular pentagons
and a triangle. The angles marked x° are equal.

What is the value of x?

A 24 B 30 C 36 D 40 E 45
𝑥◦

𝑥◦

Solution C

Let P, Q and R be the points shown in the diagram.

The interior angles of a regular pentagon are all 108°.

Because the two pentagons are congruent, PR = PQ.
Therefore ∠PRQ = ∠PQR = x°.

Because the sum of the angles in a triangle is 180°,
from the triangle PQR, we have x° + x° + ∠QPR =
180°. Therefore ∠QPR = 180° − 2x°.

The sum of the angles at a point is 360°. Therefore from the angles at the point P, we have

(180° − 2x°) + 108° + x° + 108° = 360°.

That is
396° − x° = 360°.

It follows that
x° = 396° − 360° = 36°.

For investigation

3.1 Prove that the sum of the angles in a triangle is 180°.

3.2 Prove that each interior angle of a regular pentagon is 108°.

3.3 Find a formula in terms of n for the size of the interior angles of a regular polygon with n
sides.

3.4 The diagram shows a regular heptagon, two regular
pentagons and a triangle.

What are the interior angles of the triangle?
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4. The positive integer k is a solution of the equation (k ÷ 12) ÷ (15 ÷ k) = 20.

What is the sum of the digits of k?

A 15 B 12 C 9 D 6 E 3

Solution D

We have

(k ÷ 12) ÷ (15 ÷ k) =
k
12

÷
15
k

=
k
12

×
k
15

=
k × k

12 × 15

=
k2

180
.

It follows that

(k ÷ 12) ÷ (15 ÷ k) = 20 ⇔
k2

180
= 20

⇔ k2 = 3600
⇔ k = 60, as k > 0.

The sum of the digits of 60 is 6 + 0 = 6.

For investigation

4.1 Find the solutions of the following equations.

(a) (x ÷ 5) ÷ (5 ÷ x) = 4.

(b) (x ÷ 2) ÷ ((x ÷ 10) ÷ (x ÷ 3)) = 15.

5. The sum of four consecutive primes is itself prime.

What is the largest of the four primes?

A 37 B 29 C 19 D 13 E 7

Solution E

The sum of four odd primes is an even number greater than 2, and therefore is not a prime.
Therefore the four consecutive primes whose sum is prime includes the only even prime 2.

It follows that the four consecutive primes are 2, 3, 5 and 7. Their sum is 17 which is a prime.
The largest of these four consecutive primes is 7.

For investigation

5.1 Which is the smallest prime that is the sum of five consecutive primes?
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6. Three points, P, Q and R are placed on the circumference of a circle
with centre O. The arc lengths PQ, QR and RP are in the ratio
1 : 2 : 3.

In what ratio are the areas of the sectors POQ, QOR and ROP?

A 1 : 1 : 1 B 1 : 2 : 3 C 1 : π : π2

D 1 : 4 : 9 E 1 : 8 : 27

𝑂

Solution B

The key facts that we need to use here are

(a) the ratio of the length of an arc to the length of the circumference is
the same as the ratio of the angle that the arc subtends at the centre of
the circle to the angle in a complete revolution,

and

(b) the ratio of the area of a sector to the area of the circle is the same as
the ratio of the angle in the sector to the angle in a complete revolution.

It follows from (a) that the ratios of the arc lengths of PQ, QR and RP are the same as the ratios
of the angles that the arcs subtend at the centre of the circle.

Therefore these angles are in the ratio 1 : 2 : 3.

Similarly, it follows from (b) that the ratios of the areas of the sectors POQ, QOR and ROP are
the same as the ratios of the angles in the sectors.

Therefore the areas of the sectors POQ, QOR and ROP are in the ratio 1 : 2 : 3.

Commentary

From the basic facts (a) and (b) we can deduce that

(c) The ratio of the length of an arc of a circle to the circumference of a circle is equal
to the ratio of the area the arc subtends at the centre of the circle to the area of the
circle.

An alternative method would have been to base the solution on this fact.

For investigation

6.1 Suppose that the circle has radius 3 and the arc lengths PQ, QR and RP are in the ratio
2 : 3 : 4.

What is the area of the sector QOR?
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7. Which of these numbers is the largest?

A 25000 B 34000 C 43000 D 52000 E 61000

Solution B

We have

25000 = (25)1000 = 321000,

34000 = (34)1000 = 811000,

43000 = (43)1000 = 641000,

and
52000 = (52)1000 = 251000.

Since 6 < 25 < 32 < 64 < 81, it follows that 61000 < 251000 < 321000 < 641000 < 811000.

Therefore 61000 < 52000 < 25000 < 43000 < 34000.

Hence, of the given numbers, it is 34000 that is the largest.

For investigation

7.1 Which of these numbers is the largest?
(a) 27000, (b) 36000, (c) 45000, (d) 54000, (e) 63000.

8. What is the area of the region inside the
quadrilateral PQRS?

A 18 B 24 C 36 D 48
E more information needed

𝑃

𝑅 𝑄

𝑆

12

13
4
3

Solution B

By Pythagoras’ Theorem applied to the right-angled
triangle PSR, we have PR2 = 32 + 42 = 9 + 16 = 25.
Therefore PR = 5.

It follows that in the triangle PRQ we have

PQ2 = 132 = 169 = 25+144 = 52+122 = PR2+RQ2.

Therefore, by the converse of Pythagoras’ Theorem, ∠PRQ = 90°.

Because ∠PRQ = 90°, the area of the triangle PRQ is 1
2 (RQ × RP) = 1

2 (12 × 5) = 30. Similarly,
the area of the triangle PSR is 1

2 (SP × SR) = 1
2 (3 × 4) = 6.

The area of the quadrilateral PQRS is the area of the triangle PRQ minus the area of the triangle
PSR. Hence the area of PQRS is 30 − 6 = 24.
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9. Alison has a set of ten fridge magnets showing the integers from 0 to 9 inclusive.

In how many different ways can she split the set into five pairs so that the sum of each
pair is a multiple of 5?

A 1 B 2 C 3 D 4 E 5

Solution D

The number 0 can only be paired with 5.

The number 1 may be paired with 4 or with 9. If 1 is
paired with 4, 6 has to be paired with 9. If 1 is paired
with 9, 6 has to be paired with 4.

The number 2 may be paired with 3 or with 8. If 2 is paired with 3, 7 has to be paired with 8. If 2
is paired with 8, 7 has to be paired with 3.

These possibilities are shown in the diagram above. Thus the complete pairing is determined by
first the choice which of 4 or 9 to pair with 1, giving two choices, and then the choice of which of
3 or 8 to pair with 2.

These choices are independent. It follows that there are 2× 2 = 4 ways to split the set of numbers
into five pairs so that the sum of each pair is a multiple of 5.

For investigation

9.1 List the 4 different pairings that satisfy the condition that the sum of each pair is a multiple
of 5.

9.2 Bibi has a set of twenty fridge magnets showing the integers from 0 to 19, inclusive. In
how many different ways can she split the set into ten pairs so that the sum of each pair is
a multiple of 5?

9.3 Chandra has a set of twenty-four fridge magnets showing the integers from 0 to 23,
inclusive. In how many different ways can she split the set into twelve pairs so that the
sum of each pair is a multiple of 5?
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10. In a survey, people were asked to name their
favourite fruit pie. The pie chart shows the
outcome. The angles shown are exact with no
rounding.

What is the smallest number of people who could
have been surveyed?

A 45 B 60 C 80 D 90 E 180

apple

cherry

rhubarb

plum

140◦
108◦

72◦
40◦

Solution D

Suppose that p people were surveyed.

The total of the angles is 360°. Therefore the proportion of the people who said that their favourite
is apple pie is

140
360
=

7
18

. Hence the number who chose apple pie was
7
18

p. This is an integer.
Therefore p is a multiple of 18.

Similarly, as the proportion who said their favourite is cherry pie is
108
360
=

3
10

, we deduce that p
is a multiple of 10.

Likewise, as
72
360
=

1
5

and
40
360
=

1
9

, we know that p is also a multiple of 5 and of 9.

Therefore the smallest possible value of p is the least common multiple of 18, 10, 5 and 9, which
is 90. Hence the smallest number of people who could have been surveyed is 90.

For investigation

10.1 The results of another survey about people’s
favourite fruit pies are shown in the pie chart
on the right. Again, the angles are exact with no
rounding.

What is the smallest number of people who could
have been surveyed?
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11. Alitta claims that if p is an odd prime then p2 − 2 is also an odd prime.

Which of the following values of p is a counterexample to this claim?

A 3 B 5 C 7 D 9 E 11

Solution E

A counterexample to the claim is an odd prime p such that p2 − 2 is not an odd prime.

3 is an odd prime, and 32 − 2 = 7 is also an odd prime. So 3 is not a counterexample.

5 is an odd prime, and 52 − 2 = 23 is also an odd prime. So 5 is not a counterexample.

7 is an odd prime, and 72 − 2 = 47 is also an odd prime. So 7 is not a counterexample.

9 is not an odd prime. So 9 is not a counterexample

11 is an odd prime, but 112 − 2 = 119 = 7 × 17 is not an odd prime. Therefore 11 is a
counterexample.

For investigation

11.1 For each of the following statements find a counterexample.

(a) If p is a prime, then 6p + 1 is also a prime.

(b) If p is an integer with p > 1 and 6p + 1 is a prime, then p is also a prime.

(c) If p is a prime, then 3p + 20 is also a prime.

(d) If p is a prime, then there is another prime between p and p + 10.

12. For how many positive integers N is the remainder 6 when 111 is divided by N?

A 5 B 4 C 3 D 2 E 1

Solution A

The remainder when 111 is divided by N is 6 provided that 111 = QN + 6, where Q is a
non-negative integer and 6 < N . In other words, N is a factor of 111 − 6 with 6 < N .

Now 111− 6 = 105. The prime factorization of 105 is 3× 5× 7. Therefore the factors of 111− 6
are 1, 3, 5, 7, 15, 21, 35 and 105.

Of these 8 factors all but 1, 3 and 5 are greater than 6.

Therefore there are 5 positive integers N which give a remainder 6 when 111 is divided by N .

For investigation

12.1 For how many positive integers N is the remainder 7 when 112 is divided by N?
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13. Which of these is the mean of the other four?

A
√

2 B
√

18 C
√

200 D
√

32 E
√

8

Solution D

We use the fact that one of the options is the mean of the other four options provided that it is the
mean of all five of the options. Your are asked to check this fact in Problem 13.2.

The mean of the five numbers given as options is
√

2 +
√

18 +
√

200 +
√

32 +
√

8
5

=

√
2 + 3

√
2 + 10

√
2 + 4

√
2 + 2

√
2

5

=

(
1 + 3 + 10 + 4 + 2

5

)
√

2

=

(
20
5

)
√

2

= 4
√

2

=
√

32.

Therefore the correct option is D.

For investigation

13.1 (a) Find the mean of the primes 5, 7, 11, 13 and 19.

(b) Hence show that this mean is one of these primes.

(c) Check that this mean is also the mean of the other four primes.

13.2 (a) Show that if the number p is the mean of the five numbers p, q, r , s and t, then p is
also the mean of the four numbers q, r , s and t.

(b) Show that if the number p is the mean of the four numbers q, r , s and t, then p is also
the mean of the five numbers p, q, r , s and t.

13.3 Show that the result of Problem 13.2 generalizes to the case of a set of n numbers, for
each integer n with n ≥ 2. That is, show that given a set of n numbers, a number p in the
set is the mean of the other n − 1 numbers in the set if and only if it is the mean of all the
n numbers in the set.

13.4 Which of the seven primes consecutive 7, 11, 13, 17, 19, 23 and 27 is the mean of the
other six primes in the list?

13.5 Which of the seven consecutive primes 101, 103, 107, 109, 113, 127 and 131 is the mean
of the other six primes in the list?
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14. What is the smallest number of rectangles, each measuring 2 cm by 3 cm, which are
needed to fit together without overlap to form a rectangle whose sides are in the ratio
5 : 4 ?

A 10 B 15 C 20 D 30 E 60

Solution D

A rectangle whose sides are in the ratio 5 : 4 has dimensions 5k cm × 4k cm, for some positive
number k. Since we aim to cover this rectangle with 2 cm × 3 cm rectangles without overlap, k
needs to be a positive integer.

The area of the 5k cm×4k cm rectangle is (5k×4k) cm2 = 20k2 cm2. The 2 cm×3 cm rectangles
have area 6 cm2.

It follows that 20k2 needs to be a multiple of 6. The least positive integer k for which this
is the case is 3. In this case the larger rectangle has dimensions 15 cm × 12 cm and area
(15 × 12) cm2 = 180 cm2. Therefore the smallest number of 2 cm × 3 cm rectangles that are
needed would be

180
6
= 30, provided that it is possible to cover a 15 cm × 12 cm with 30

2 cm × 3 cm rectangles.

To complete the question we need to show that this is possible.

One way in which this can be done is shown in the diagram
on the right.

Therefore the smallest number of 2 cm × 3 cm rectangles that
are needed is 30.

For investigation

14.1 Find other ways to fit together 30 rectangles measuring 2 cm×3 cm to make a 15 cm×12 cm
rectangle.

© UKMT November 2021 www.ukmt.org.uk 11
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15. Three dice, each showing numbers 1 to 6 are coloured red, blue and yellow respectively.
Each of the dice is rolled once. The total of the numbers rolled is 10. In how many
different ways can this happen?

A 36 B 30 C 27 D 24 E 21

Solution C

We note first that, because the dice are coloured, two outcomes with total 10, but with different
numbers rolled on particular dice, count as being different. For example

red : 6 blue : 3 yellow : 1

counts as being different from the outcome

red : 6 blue : 1 yellow : 3.

With three different numbers there are three choices for the dice which rolls the first number, then
two choices for the dice which rolls the second number, leaving just one choice for the dice which
rolls the third number. This gives a total of 3 × 2 × 1 = 6 arrangements for the three numbers.

It can be checked that when two of the numbers are the same these can occur in 3 different ways.

It is not possible to have three equal scores with total 10.

To solve this problem we now list in the following table all possible ways a total of 10 may be
obtained by throwing three dice. In each row of the table we also give the number of different
ways the three numbers in the row may be arranged between the three dice.

scores no. of ways

6, 3, 1 6
6, 2, 2 3
5, 4, 1 6
5, 3, 2 6
4, 4, 2 3
4, 3, 3 3

Therefore the total number of different ways of achieving a total of 10 is 6+ 3+ 6+ 6+ 3+ 3 = 27.

For investigation

15.1 Check that when two of the numbers are the same they can occur in 3 different ways on
the three dice.

15.2 In how many different ways can the total of the numbers rolled be 12?

15.3 For 3 ≤ T ≤ 18, calculate the number of different ways in which a total of T can be rolled
using the three dice.

What do you notice about the answers?

© UKMT November 2021 www.ukmt.org.uk 12

https://\UKMTweb 


Senior Mathematical Challenge 2021 Solutions and investigations

16. An array of 25 equally spaced dots is drawn in a square grid as
shown. Point O is in the bottom left corner. Linda wants to draw
a straight line through the diagram which passes through O and
exactly one other point.

How many such lines can Linda draw?

A 4 B 6 C 8 D 12 E 24
𝑂

Solution C

In the diagram on the right the solid lines go through
O and exactly one other point, and the dotted lines go
through O and at least two other points.

There is a line through every point so all possible lines
have been considered.

The solid lines are the lines that Linda can draw. We
therefore see that the number of lines that Linda can draw
is 8.

[Note: Because the diagram is symmetric about the bottom-left to top-right diagonal, it was only
really necessary to draw half the lines in the diagram.]

For investigation

16.1 An array of 36 equally spaced dots is drawn in a square
grid as shown. Mollie wants to draw a straight line
which passes through the dot marked O and exactly
one other dot.

How many of these lines can Mollie draw?

16.2 Naomi has a piece of paper on which are drawn 400 equally spaced dots in a square
20 × 20 grid.
Naomi wants to draw a straight line which passes through the bottom left-hand dot and
exactly one other dot.
How many of these lines can Naomi draw?

16.3 Olivia has a piece of paper on which are drawn 10 000 equally spaced dots in a square
100 × 100 grid.
Olivia wants to draw a straight line which passes through the bottom left-hand dot and
exactly one other dot.
How many of these lines can Olivia draw?

© UKMT November 2021 www.ukmt.org.uk 13
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17. A circle of radius r and a right-angled isosceles triangle
are drawn such that one of the shorter sides of the triangle
is a diameter of the circle.

What is the shaded area?

A
√

2r B r2 C 2πr D πr2

4

E (
√

2 − 1)πr2

Solution B

Let O be the centre of the circle and let P, Q, R and S be the
points as shown in the diagram.

Because PQR is a right-angled isosceles triangle, ∠PRQ =
∠RPQ = 45°, and PQ = QR = 2r .

Because the angle in a semicircle is a right angle [this is Thales’
theorem], ∠RSQ = 90°. Therefore, because the sum of the
angles in a triangle is 180°, we have ∠RQS = 45°.

We therefore have ∠SRQ = 45° = ∠SQR. It follows that SQ = SR.

Because SQ = SR the segments of the circle cut off by these lines, shown as hatched in the
diagram, are congruent. Hence they have the same area.

It follows that the shaded area is the same as the area of the triangle PQS.

PQS is a right-angled isosceles triangle with hypotenuse PQ of length 2r . Therefore the triangle
PQS has area r2.

Therefore the shaded area is r2.

For investigation

17.1 Explain why from the fact that the hypotenuse of the triangle PQS has length 2r , it follows
that the area of the triangle is r2.

17.2 In the diagram on the right there is a circle of radius r and a
right-angled isosceles triangle. One of the shorter sides of
the triangle is a diameter of the circle.

What is the shaded area?

17.3 Give a proof of Thales’ theorem:

The angle in a semicircle is a right angle.

© UKMT November 2021 www.ukmt.org.uk 14
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18. The number 840 can be written as
p!
q!

, where p and q are positive integers less than 10.

What is the value of p + q?

Note that, n! = 1 × 2 × 3 × · · · × (n − 1) × n.

A 8 B 9 C 10 D 12 E 15

Solution C

We note first that, as
p!
q!
= 840, it follows that p! > q! and hence p > q. Therefore

p!
q!
=

1 × 2 × · · · × q × (q + 1) × · · · × p
1 × 2 × · · · × q

= (q + 1) × (q + 2) × · · · × (p − 1) × p.

Thus 840 =
p!
q!

is the product of the consecutive integers q + 1, q + 2, . . . , p − 1, p, where p ≤ 9.

Since 840 is not a multiple of 9, p , 9. Since 840 is a multiple of 7, p ≥ 7.

Now 5 × 6 × 7 × 8 = 1680 > 840, while 6 × 7 × 8 = 336 < 840. Hence 840 is not the product of
consecutive integers of which the largest is 8.

We deduce that p = 7. It is now straightforward to check that

840 = 4 × 5 × 6 × 7 =
7!
3!
.

Therefore p = 7 and q = 3. Hence p + q = 7 + 3 = 10.

For investigation

18.1 Find positive integers p and q with q < p ≤ 20 such that

p!
q!
= 2730.

18.2 Is it possible to find positive integers p and q with q < p ≤ 20 such that

p!
q!
= 253 ?
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19. The diagram shows two overlapping triangles: tri-
angle FGH with interior angles 60°, 30° and 90°
and triangle EGH which is a right-angled isosceles
triangle.

What is the ratio of the area of triangle IFG to the
area of triangle IEH? 𝐺 𝐻

𝐸
𝐹

𝐼

A 1 : 1 B 1 :
√

2 C 1 :
√

3 D 1 : 2 E 1 : 3

Solution D

We suppose that we have chosen units so that the length of
GH is 1.

Because FGH is a 60°, 30°, 90° triangle, it follows that FG
has length 1

2 .

Because EGH is a right-angled isosceles triangle it also
follows that EH has length 1√

2
.

In the triangles IFG and IEH we have

∠GFI = ∠HEI = 90°
and

∠GIF = ∠HIE (vertically opposite angles).

Because the sum of the angles in both these triangles is 180°, it follows that

∠FGI = ∠EHI .

Therefore the triangles IFG and IEH are similar.

The ratio of the areas of similar triangles equals the ratio of the squares of the lengths of
corresponding sides. Therefore

area of IFG : area of IEH = FG2 : EH2

=
( 1

2
)2 :

( 1√
2

)2
= 1

4 : 1
2

= 1 : 2.

For investigation

19.1 Explain why, given that GH has length 1, FG has length 1
2 and EH has length 1√

2
.

19.2 Explain why the ratio of the areas of similar triangles equals the ratio of the squares of the
lengths of corresponding sides.

19.3 (a) Given that GH has length 1, find the area of the triangle GIH.
(b) Given that GH has length 1, find the areas of the triangles IFG and IEH.
(c) Hence verify that the ratio of the areas of the triangles IFG and IEH is 1 : 2.
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20. Laura and Dina have a running race. Laura runs at constant speed and Dina runs n times
as fast where n > 1. Laura starts s m in front of Dina.

What distance, in metres, does Dina run before she overtakes Laura?

A
ns

n − 1
B ns C

s
n − 1

D
ns

n + 1
E

s
n

Solution A

Suppose that Dina has run a distance of d metres when she overtakes Laura. Because Laura has
a start of s metres, at this time Laura has run a distance of d − s metres.

Because they have been running for the same amount of time when Dina overtakes Laura, at this
time the ratio of the distances they have run is the same as the ratio of their speeds. That is

d : d − s = n : 1.

It follows that
d

d − s
=

n
1
.

Hence
d = n(d − s).

This last equation may be rearranged as

ns = d(n − 1).

Therefore
d =

ns
n − 1

.

For investigation

20.1 Suppose that when Dina overtakes Laura she has run twice as far as Laura.

What is the ratio of Dina’s speed to Laura’s speed?
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21. The numbers m and k satisfy the equations 2m + 2k = p and 2m − 2k = q.

What is the value of 2m+k in terms of p and q?

A
p2 − q2

4
B

pq
2

C p + q D
(p − q)2

4
E

p + q
p − q

Solution A

We have

2m + 2k = p (1)
and

2m − 2k = q. (2)
Adding equations (1) and (2), we obtain

2(2m) = p + q
and hence

2m =
p + q

2
. (3)

Subtracting equations (2) from equation (1), we obtain
2(2k) = p − q

and hence
2k =

p − q
2
. (4)

Therefore, by (3) and (4)
2m+k = 2m × 2k

=

(
p + q

2

)
×

(
p − q

2

)
=

(p + q)(p − q)
4

=
p2 − q2

4
.

For investigation

21.1 Use the equations p = 2m + 2k and q = 2m − 2k to obtain expressions for p2 and q2.

Hence deduce that
p2 − q2

4
= 2m+k .

21.2 The numbers a and b satisfy the equations

2a+b = r

and
2a−b = s.

Find 2a + 2b in terms of r and s.
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22. A triangle with interior angles 60°, 45° and 75° is inscribed in a circle of radius 2.

What is the area of the triangle?

A 2
√

3 B 4 C 6 +
√

3 D 6
√

3 E 3 +
√

3

Solution E

Let P, Q and R be the vertices of the triangle, let O be the
centre of the circle, as shown in the diagram.

The angle subtended by an arc at the centre of a circle is twice
the angle subtended at the circumference. Therefore

∠QOR = 120°,

∠ROP = 90°

and
∠POQ = 150°.

We use the notation [XY Z] for the area of a triangle XY Z .

Using the formula 1
2ab sin θ for the area of a triangle with sides of lengths a and b with included

angle θ, we have

[QOR] =
1
2
(OQ × OR) sin 120° =

1
2
(2 × 2)

√
3

2
=
√

3,

[ROP] =
1
2
(OR × OP) sin 90° =

1
2
(2 × 2) = 2

and
[POQ] =

1
2
(OP × OQ) sin 150° =

1
2
(2 × 2)

1
2
= 1.

Therefore
[PQR] = [QOR] + [ROP] + [POQ] =

√
3 + 2 + 1 = 3 +

√
3.

For investigation

22.1 Find a proof that the angle subtended by an arc at the centre of a
circle is twice the angle subtended at the circumference. [That
is, try and prove this for yourself, or find a proof in a book or
on the internet, or ask your teacher.]

22.2 Show that sin 120° =
√

3
2

and sin 150° =
1
2

.

22.3 Show that the area of a triangle with side lengths a and b with
included angle θ is 1

2ab sin θ.
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23. Let x be a real number. What is the minimum value of
(
x2 − 4x + 3

) (
x2 + 4x + 3

)
?

A −16 B −9 C 0 D 9 E 16

Solution A

We have (
x2 − 4x + 3

) (
x2 + 4x + 3

)
=
(
(x2 + 3) − 4x

) (
(x2 + 3) + 4x

)
= (x2 + 3)2 − (4x)2

= x4 + 6x2 + 9 − 16x2

= x4 − 10x2 + 9
= (x2 − 5)2 − 16.

For every real number x, (x2 − 5)2 ≥ 0 and therefore (x2 − 5)2 − 16 ≥ −16.

Now, when x =
√

5, (x2 − 5)2 − 16 = 02 − 16 = −16.

It follows that the minimum value of
(
x2 − 4x + 3

) (
x2 + 4x + 3

)
is −16.

For investigation

23.1 (a) Find the real numbers a and b for which

x4 − 8x2 + 12 = (x2 + a)2 + b, for all real numbers x.

(b) Hence find the minimum value of x4 − 8x2 + 12.

23.2 (a) Find the real numbers a and b for which

x4 + 8x2 + 12 = (x2 + a)2 + b, for all real numbers x.

(b) Hence find the minimum value of x4 + 8x2 + 12.

Note

If you have met the differential calculus, you will know that the minimum values of polynomials
may be found using calculus. In this case, check that using calculus you obtain the minimum
value −16 for the polynomial (x2 − 4x + 3)(x2 + 4x + 3).

Also, use calculus to solve Problems 23.1 and 23.2.
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24. Saba, Rayan and Derin are cooperating to complete a task. They each work at a constant
rate independent of whoever else is working on the task. When all three work together,
it takes 5 minutes to complete the task. When Saba is working with Derin, the task takes
7 minutes to complete. When Rayan is working with Derin, the task takes 15 minutes to
complete.

How many minutes does it take for Derin to complete the task on his own?

A 21 B 28 C 35 D 48 E 105

Solution E

Suppose that it takes Saba, Rayan and Derin, working on their own, s, r and d minutes,
respectively, to complete the task.

Then in 1 minute Saba completes
1
s

of the task, Rayan completes
1
r

of the task, and Derin

completes
1
d

of the task. Hence when all three are working together in 1 minute they complete
1
s
+

1
r
+

1
d

of the task. Since it takes them 5 minutes to complete the task when they all work
together,

1
s
+

1
r
+

1
d
=

1
5
.

Similarly, as it takes Saba working with Derin 7 minutes to complete the task,

1
s
+

1
d
=

1
7
.

Likewise, as it takes Rayan working with Derin 15 minutes to complete the task,

1
r
+

1
d
=

1
15
.

We therefore have

1
d
=

(
1
s
+

1
d

)
+

(
1
r
+

1
d

)
−

(
1
s
+

1
r
+

1
d

)
=

1
7
+

1
15

−
1
5

=
15
105
+

7
105

−
21
105

=
1

105
.

Therefore it takes Derin 105 minutes to complete the task on his own.

For investigation

24.1 (a) How many minutes does it take for Rayan to complete the task on his own?

(b) How many minutes does it take for Saba to complete the task on her own?
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25. Five line segments of length 2, 2, 2, 1 and 3 connect two
corners of a square as shown in the diagram.

What is the shaded area?

A 8 B 9 C 10 D 11 E 12

Solution B

Commentary

There are many different ways in which this problem may be solved. We give a
solution which involves few calculations, but quite a lot of facts about the diagram.
You are asked to check these facts in Problems 25.1 and 25.2.

Three other ways of solving the problem are indicated in problems 25.3, 25.4 and
25.5.

We let the points in the diagram be labelled as shown. The points S and W are chosen so that
SJW L is a rectangle.

The shaded region is the polygon JNPQRLM . We use the notation [JNPQRLM] for the area
of this polygon, and similar notation for the areas of other polygons.

In the rectangle SJW L we have JW = 7 and W L = 1. Therefore, by Pythagoras’ Theorem
applied to the triangle JW L, we have JL2 = 72 + 12 = 50. Hence JL =

√
50 = 5

√
2. Since the

diagonal of the square JKLM has length 5
√

2, it follows that the side length of the square is 5.
Hence [JKLM] = 52 = 25. (You are asked to check all these facts in Problem 25.1.)

The triangles JKV and LMT are congruent. We let x be the common area of these triangles.
Also, the triangles JTS and LVW are congruent. We let y be the common area of these triangles.
It follows that the areas of the polygons in the diagram are as shown. (You are asked to check all
these facts in Problem 25.2.)
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We have
[JKLM] = [JKV] + [LMT] + [SJW L] − [JTS] − [LVW],

and therefore
25 = 2x + 7 − 2y.

Hence
2x − 2y = 25 − 7 = 18,

and therefore
x − y = 9.

It follows that

[JNPQRLM] = [TUPQRLM] + [JNUT] = (x − 2) + (2 − y) = x − y = 9.

Note: In the problems below, we use the same notation as in the solution above.

For investigation

25.1 (a) Explain why in the rectangle SJW L we have JW = 7 and W L = 1, and hence
JL = 5

√
2.

(b) Explain why it follows from the fact that the diagonal JL has length 5
√

2 that the
square JKLM has side length 5.

25.2 (a) Show the the triangles JKV and LMT are congruent, and that the triangles JTS and
LVW are congruent.

(b) Deduce that the areas of the polygons in the diagram are as shown.
25.3

The lightly shaded region in the diagram above has been drawn so that it is congruent to
the region whose area we need to find.
(a) Find the area of the unshaded region in the diagram.
(b) Use the fact that the area of the square is 25 to find the area of each of the shaded

regions.
25.4 (a) Show that the triangles JKV and LWV are similar.

(b) Deduce that LV has length 5
4 and that VK has length 15

4 .
(c) Use these lengths to find the values of x and y.

Hence check that x − y = 9.
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25.5 Let ∠V JK = θ.

(a) By considering the projections of the line segments JN , NP, PQ, QR and RL on
JK and on JM , show that both

7 cos θ − sin θ = JK

and
7 sin θ + cos θ = JM .

(b) Use the fact that JK = JM to deduce that sin θ = 3
4 cos θ. Hence find the values of

cos θ and sin θ.

(c) Use the values of cos θ and sin θ to calculate the area of the polygon JNPQRLM .
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